Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor.
نویسندگان
چکیده
Electrochemical and in situ X-ray absorption spectroscopy (XAS) measurements of various MnO2-coated carbon materials (MnO2/acid-functionalized carbon nanotubes (C-CNT), MnO2/reduced graphene oxide (RGO), and MnO2/RGO-Au electrodes) were conducted to evaluate the supercapacitive performances and electronic structures. MnO2 was deposited on the surface of C-CNT, RGO, and RGO-Au via a spontaneous redox reaction to facilitate the growth of the bulk form of MnO2/C-CNT and the surface forms of MnO2/RGO-based materials. Various forms of MnO2 on the carbon materials exhibited different charge/discharge behaviors. The specific capacitances of the MnO2/RGO and MnO2/RGO-Au electrodes at a current density of 1 A g(-1) were about 433 and 469 F g(-1), respectively; these values are about 1.5 times that of the MnO2/C-CNT (259 F g(-1)) electrode. Specific capacitances of 220 and 281 F g(-1) with retention rates of about 50-60% were obtained from MnO2/RGO and MnO2/RGO-Au, respectively, even at a high current density of 80 A g(-1). Experimental results revealed that the long-term electrochemical stability of the MnO2/RGO-based electrodes (with ∼90% retention) exceeded that of the MnO2/C-CNT electrode (with ∼60% retention) after 1000 cycles at a high scan rate of 80 A g(-1). This finding indicates that MnO2/RGO-based electrodes feature excellent cycling stability and rate capacity retention performance. To elucidate the atomic/electronic structures of the MnO2/C-CNT, MnO2/RGO, and MnO2/RGO-Au electrodes during the charge/discharge process, in situ XAS of the Mn K-edge was performed. The MnO2/RGO-based electrodes exhibited the least variations in the pre-peak intensity of the Mn K-edge during the charge/discharge process because a nano-network of MnO2 is homogeneously decorated on the outer surfaces of RGO-based electrodes to facilitate the growth of surface forms of MnO2/RGO and MnO2/RGO-Au. Analytical results further revealed suppression of changes in tunnel size and promotion of insertion/extraction behavior. This work, particularly the combination of cyclic voltammetry with in situ XAS measurements, will be of general value in the fields of nanomaterials and nanotechnology, and in their use in energy storage.
منابع مشابه
Reduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors
In recent years, electrochemical supercapacitors have received considerable attention from many researchers. Metal oxides such as chromium oxide with high redox activity, high specific capacity, and excellent reversibility are suitable alternatives to ruthenium oxide in supercapacitor applications. In this study, first, graphene oxide (GO) was synthesized by the modified Hummers method. The syn...
متن کاملPerformance of polyaniline/manganese oxide-MWCNT Nanocomposites as Supercapacitors
Composite electrodes of polyaniline/MnO2-Multi walled carbon nanotube (PANI/MnO2-MWCNT), MnO2-MWCNT nanocomposites and MWCNT was produced by the in situ direct coating approach. The supercapacitor performance of the nanocomposites was studied by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of electrodes were also investig...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کاملInfluences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites
MnO2 supported on graphene oxide (GO) made from different graphite materials has been synthesized and further investigated as electrode materials for supercapacitors. The structure and morphology of MnO2-GO nanocomposites are characterized by X-ray diffraction, X-ray photoemission spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Nitrogen adso...
متن کاملCarbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 28 شماره
صفحات -
تاریخ انتشار 2016